
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
03-05-2011 

2. REPORT TYPE
 

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 

High-Order CESE Methods for Solving Hyperbolic PDEs (Preprint) 5b. GRANT NUMBER 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
David L. Bilyeu, Yung-Yu Chen, S.-T. John Yu, and Jean-Luc Cambier 

5d. PROJECT NUMBER 
 

  

 5f. WORK UNIT NUMBER

23041057 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION 
REPORT  NUMBER 

 
 

Air Force Research Laboratory (AFMC) 
AFRL/RZSS 
1 Ara Road 
Edwards AFB CA 93524-7013 

 
AFRL-RZ-ED-JA-2011-151 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S 
ACRONYM(S) 

 
Air Force Research Laboratory (AFMC) 
AFRL/RZS 11. SPONSOR/MONITOR’S 

5 Pollux Drive       NUMBER(S) 
Edwards AFB CA 93524-7048 AFRL-RZ-ED-JA-2011-151 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for public release; distribution unlimited (PA #11209).  
 
 

13. SUPPLEMENTARY NOTES 
For publication in the International Journal of Computational Fluid Dynamics 

14. ABSTRACT   
In the present paper, we extend Chang’s (Chang (2010))high-order method for system of linear and non-
linear hyperbolic partial differential equations. A general formulation is presented for solving the coupled 
equations with arbitrarily high-order accuracy. To demonstrate the formulation, several linear and non-linear 
cases are reported. First, we solve a convection equation with source term and the linear acoustics 
equations. We then solve the Euler equations for acoustic waves, a blast wave, and Shu and Osher’s test 
case for acoustic waves interacting with a shock. Numerical results show higher-order convergence by 
continuous mesh refinement. The new high-order CESE method shares many favorable attributes of the 
original second-order CESE method, including: (i) compact mesh stencil involving only the immediate mesh 
nodes surrounding the node where the solution is sought, (ii) the CFL stability constraint remains to be the 

same, i.e., _ 1, as compared to the original second-order method, and (iii) shock capturing capability 

without using an approximate Riemann solver. 
 

15. SUBJECT TERMS  

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE 
PERSON 
Dr. Jean-Luc J. Cambier 

a. REPORT 
 
Unclassified 

b. ABSTRACT 
 
Unclassified 

c. THIS PAGE
 
Unclassified 

SAR 
 

21 
19b. TELEPHONE NUMBER 
(include area code) 
N/A 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18 

 



June 13, 2011 16:9 International Journal of Computational Fluid Dynamics CESE˙4th

International Journal of Computational Fluid Dynamics
Vol. 00, No. 00, Month 2009, 1–19

RESEARCH ARTICLE

High-Order CESE Methods for Solving Hyperbolic PDEs

David L. Bilyeu∗a,b, Yung-Yu Chena, S.-T. John Yu∗a and Jean-Luc Cambierb

aThe Ohio State University, Columbus, OH 43210, USA; bAir Force Research Lab,

Edwards AFB, CA 93524, USA
(Received 00 Month 200x; final version received 00 Month 200x)

In the present paper, we extend Chang’s (Chang (2010))high-order method
for system of linear and non-linear hyperbolic partial differential equations. A
general formulation is presented for solving the coupled equations with arbi-
trarily high-order accuracy. To demonstrate the formulation, several linear and
non-linear cases are reported. First, we solve a convection equation with source
term and the linear acoustics equations. We then solve the Euler equations for
acoustic waves, a blast wave, and Shu and Osher’s test case for acoustic waves
interacting with a shock. Numerical results show higher-order convergence by
continuous mesh refinement. The new high-order CESE method shares many
favourable attributes of the original second-order CESE method, including:
(i) compact mesh stencil involving only the immediate mesh nodes surround-
ing the node where the solution is sought, (ii) the CFL stability constraint
remains to be the same, i.e., ≤ 1, as compared to the original second-order
method, and (iii) shock capturing capability without using an approximate
Riemann solver.

Keywords: CESE; Higher Order; Arbitrary Order; CFD; Euler Equation; Acoustic

Equation

1. Introduction

In this work, we extend Chang’s fourth-order CESE method (Chang (2010)) for a single
non-linear hyperbolic equation to a system of coupled hyperbolic partial differential equa-
tions (PDEs). The new formulation is general and can be used to achieve an arbitrarily
order of convergence. To demonstrate the capabilities of the new scheme, we apply the
method to solve three sets of equations: (i) the one-dimensional Euler equations, (ii) the
linearised acoustic equations, and (iii) a convection equation with a source term.
The original second-order CESE method of (Chang (1995)) solves the hyperbolic PDEs

by discretizing the space-time domain by using the conservation elements (CEs) and so-
lution elements (SEs). The profiles of unknowns are prescribed by assumed discretization
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inside SEs. Aided by the approximation for the unknowns in the SEs, space-time flux
conservation can be enforced over each CE. The calculation of space-time flux conserva-
tion results in the formulation for updating the unknowns in the time marching process.
The special features of the CESE method include: (i) The a scheme, the core scheme
of the CESE method, is non-dissipative. (ii) The CESE method has the most compact
mesh stencil possible, involving only the immediate neighbouring mesh points that sur-
round the node where the solution is sought. (iii) The method uses explicit integration
in time marching. The stability criterion is CFL ≤ 1. (iv) No Riemann solver is used
and the scheme is simple and efficient. The CESE scheme has been previous used to
solve a multitude of different physics in one, two and three dimensions, including: MHD
(Zhang et al. (2006)), Navier-Stokes (Zhang et al. (2000), Chang (2007), Venkatachari
et al. (2008)), waves in solids, (Chen et al. (2011), Yang et al. (2011)).
This paper is organized as the following. Section 2 reports the fourth-order CESE

method for the coupled equations formulated in a vector form. Section 3.3 shows the
application of the general formulation to the one-dimensional Euler, linear acoustic, and
convection equation. Section 3 provides the results and discussions and our conclusion
in section 4.

2. Arbitrary-Order, One-Dimensional CESE Method

Consider a system of coupled convection equations:

∂U

∂t
+

∂F

∂x
= S, (1)

where

U
def
= (u1, u2, u3, · · · , uM )T , - conserved variables

F
def
= (f1, f2, f3, · · · , fM)T , - fluxes

S
def
= (s1, s2, s3, · · · , sM )T , - source terms

There are M equations to be solved in the system Eq. (1).
The space-time stencil used in this derivation is the same as that reported by Chang

(Chang and Wang (2003)) and is repeated here for completeness. In Fig. (1) the solid dots
A, C, and E are the solution points. A is at (xj , t

n) and C and E are at (xj−1/2, t
n−1/2)

and (xj+1/2, t
n−1/2), respectively. P+ is between M+ and F . P− is between M− and

B. The distance between P± and M± is determined by a parameter τ . The rectangles
ABCD and ADEF are basic CEs (BCEs), while the rectangle BCEF is the compound
CE (CCE) associated with the solution point A.
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Figure 1.: Mesh nodes in the one-dimensional CESE methods.

To facilitate the discussion, we let SE(j, n) denotes the SE located at x = xj and
t = tn. To denote high-order derivatives, we use the following notations:

umxatb =
∂a+bum
∂xa∂tb

In SE(j, n), the unknown variables um, m = 1, . . . ,M , are approximated by a Taylor
series:

u∗m(x, t; j, n)
def
=

NM
∑

a=0

NM−a
∑

b=0

(umxatb)
n
j

a!b!
(x− xj)

a (t− tn)b , (2)

whereNM is the desired order subtracted by 1, e.g., for the fourth-order scheme, NM = 3.
The superscript ∗ represents the numerical approximation of the variable. Inside of a SE
umxatb are constant. The flux functions fm, m = 1, . . . ,M , can also be represented with
the Taylor expansion as:

f∗
m(x, t; j, n)

def
=

NM
∑

a=0

NM−a
∑

b=0

(fmxatb)
n
j

a!b!
(x− xj)

a (t− tn)b . (3)

Inside a SE, fmxatb are constant. An advantage of a Taylor series is that its derivatives
can also be expressed as a Taylor series

u∗mxzti(x, t; j, n) =

A
∑

a=0

B−a
∑

b=0

(umxa+ztb+i)nj
a!b!

(x− xj)
a (t− tn)b ; A=NM−z

B=NM−z−i (4)

and

f∗
mxzti(x, t; j, n) =

A
∑

a=0

B−a
∑

b=0

(fmxa+ztb+i)nj
a!b!

(x− xj)
a (t− tn)b ; A=NM−z

B=NM−z−i. (5)

Equations 2 and 3 contain 2
∑NM+1

n=1 n unknowns. In the following derivation, it will be
shown, that for a given SE(j, n), the only independent variables are the spatial derivatives
(um)nj , (umx)

n
j , . . . , (umxNM )nj , m = 1, . . . ,M .
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We will now show two different methods to derive the fluxes. The first method, shown
below, uses the chain rule and finds the derivatives of the fluxes with respect to the flow
variables. The second method, shown in section 3.3 is specific to a particular flow physics
but is easily expanded to higher orders.
Since it is assumed that the fluxes are known functions of the flow variables, the flux

terms in Eq. (3) can be determined from the chain rule. To proceed, we define:

fml

def
=

∂fm
∂ul

, fml,k

def
=

∂2fm
∂ul∂uk

, fml,k,p

def
=

∂3fm
∂ul∂uk∂up

, . . . (6)

where m, l, k, p = 1, . . . ,M . For SE(j, n), we obtain:

∂fm
∂y1

=

Neq
∑

l

∂fm
∂ul

∂ul
∂y1

, y1 = x, t

∂2fm
∂y1∂y2

=

Neq
∑

l

∂fm
∂ul

∂2ul
∂y1∂y2

+

Neq
∑

l,k

∂2fm
∂ul∂uk

∂ul
∂y1

∂uk
∂y2

(y1, y2) = (x, x), (t, t), (x, t)

∂3fm
∂y1∂y2∂y3

=

Neq
∑

l

∂fm
∂ul

∂3ul
∂y1∂y2∂y3

+

Neq
∑

l,k

∂2fm
∂ul∂uk

(

∂2ul
∂y1∂y2

∂uk
∂y3

+
∂2ul

∂y1∂y3

∂uk
∂y2

+
∂2ul

∂y2∂y3

∂uk
∂y1

)

+

Neq
∑

l,k,p

∂3fm
∂ul∂uk∂up

∂ul
∂y1

∂uk
∂y2

∂up
∂y3

(y1, y2, y3) =
(x, x, x), (t, t, t),
(x, x, t), (x, t, t),

(7)

for m = 1, . . . ,M . Equation Eq. (7) shows the derivatives required by the fourth order
scheme but these equations will continue up to the derivatives required by the desired or-
der. A drawback to this method is that with each additional derivative the flux equations
becomes more complex.
Next we will derive the equations used to find the temporal derivatives. These deriva-

tives are solved by substituting Eqs. (2) and (3) into Eq. (1) in a given SE(j, n), yielding

∂u∗m(x, t; j, n)

∂t
+

∂f∗
m(x, t; j, n)

∂x
= sm, m = 1, . . . ,M. (8)

Then by taking derivatives of Eq. (8) in both space and time we get

(u∗mt)
n
j = (sm)nj − (f∗

mx)
n
j , (u∗mxt)

n
j = (smx

)nj − (f∗
mxx)

n
j , (u∗mtt)

n
j = (smt

)nj − (f∗
mxt)

n
j , . . . .

This result can be written in a more general form as

u∗mxzti = s∗mxzti−1 − f∗
mxz+1ti−1 (9)

for m = 1, . . . , M , z = 0, . . . NM , i = 1, . . . NM − z. As shown in Eqs. (7) and (9), the
only independent variables are the spatial derivatives for each governing equation. As
such, there are (NM +1)M unknowns for M equations associated with a mesh point. For
example, a fourth-order representation of the Euler equation would contain 4 unknowns
per equation, giving a total of 12 unknowns for the one-dimensional Euler equations.
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To proceed, for each of m = 1, . . . ,M , the unknowns are categorized as: (i) even-order
derivatives, (um)nj , (umxx)

n
j , . . . , umx2n and (ii) odd-order derivatives, (umx)

n
j , (umxxx)

n
j ,

. . . umx2n+1 n = (OD − 1)/2. Where OD is the accuracy of the Taylor series. In what
follows, we introduce an arbitrary order CESE c-τ scheme for a system of M PDEs.
The c-τ scheme uses space-time integration for the advancing formula for the even-order
derivatives, while the odd-order derivatives are calculated from a central-difference-like
procedure.

2.1. Even-Order Derivatives

It can be shown that by differentiating Eq. (8) twice with respect to x, we obtain:

∂u∗mxx(x, t; j, n)

∂t
+

∂f∗
mxx(x, t; j, n)

∂x
=

∂2s∗m
∂x2

, m = 1, . . . ,M, (10)

or in a more general form

∂u∗mx2z(x, t; j, n)

∂t
+

∂f∗
mx2z(x, t; j, n)

∂x
=

∂2zs∗m
∂x2z

, z = 0, 1, . . . , (NM − 1)/2. (11)

Consider the Euclidean space E2 with the coordinates (ξ1, ξ2) = (x, t). Aided by defining:

h
∗
mx2z

def
= (f∗

mx2z(x, t; j, n), u∗mx2z (x, t; j, n))T , z = 1, . . . , (NM − 1)/2,

and the divergence theorem, Eqs. (8) and (11) can be transformed into integral equations
as:

∮

S(V )
h
∗
mx2z · ds = s∗mx2z , z = 0, . . . , (NM − 1)/2, (12)

where S(V ) is the closed boundary of an arbitrary region V and ds is defined in Fig. (2).

S(V )

ds

dr

r = (x, t)

t

x

Figure 2.: Space-time integration over an arbitrary closed domain V .
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We define:

u∗mx̄z t̄k
def
=

∂z+ku∗m
∂xztk

(

∆x

4

)z (∆t

4

)k

(13)

f∗
mx̄z t̄k

def
=

∂z+kf∗
m

∂xztk

(

∆x

4

)z (∆t

4

)k

(14)

smx̄z t̄k
def
=

∂z+ksm
∂xztk

(

∆x

4

)z (∆t

4

)k

(15)

where ∆x = xj+1/2 − xj−1/2 and ∆t = tn − tn−1. In order to write equations more
compactly, any local constant enclosed within a square bracket will be evaluated at
the location specified by the subscript and superscript written on the enclosing square
bracket, e.g.:

(umxx)
n
j + (umxxx)

n
j

∆x

2
+ (umxxt)

n
j

∆t

2
≡

[

umxx + umxxx
∆x

2
+ umxxt

∆t

2

]n

j

.

Aided by Eqs. (13) and (14), Eq. (12) gives:

(umx̄z)nj =
1

∆x

∫∫

smx̄zdV+

1

2

NM−z
∑

k=0

2k

(k + 1)!

(

[

umx̄k+z +
∆t

∆x
fmx̄z t̄k

]n−1/2

j−1/2

+

[

(−1)kumx̄k+z −
∆t

∆x
fmx̄z t̄k

]n−1/2

j+1/2

)

−

NM−z−1

2
∑

k=1

22k

(2k + 1)!
(umx̄2k+z)nj

(16)

Equation (16) provides an explicit formulation for all even spatial derivatives. As long
as the highest even derivative is calculated first the last term on the RHS will have already
been calculated. For example, in a fourth order accurate scheme the conserved variables
are um, umx, umx2 , and umx3 . In this case (umx2)nj will be calculated first followed by

(um)nj . It should also be noted that the ∗ is absent from the source term. This is because
the source term treatment varies when dealing with different flow physics and may not
require a Taylor series expansion.

2.2. Odd-Order Derivatives

In order to compute the odd derivatives a central differencing approach is applied fol-
lowing the c-τ scheme. There are two possible formulations for the odd-order derivatives
(i) the standard c-τ scheme which is applicable if there are no discontinuities present
and (ii) a re-weighted c-τ minmod scheme which is used if there are discontinuities in
the flow field.
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In order to mitigate the dissipation as the local CFL number decreases the central
differencing is applied at points P+ and P−, where P± are points located at

x
(

P+
)

= xj + (1 + τ)
∆x

4
= xj+1/2 − (1− τ)

∆x

4
, (17)

x
(

P−
)

= xj − (1 + τ)
∆x

4
= xj−1/2 + (1− τ)

∆x

4
. (18)

Where τ is the absolute value of the local CFL number.
First we define u∗mx̄z(P±) to be the Taylor series expansion of (umx̄z)jn from (xj , t

n) to
x(P±). Then we can solve for umx̄z+1 by subtracting u∗mx̄z(P−) from u∗mx̄z(P+):

umx̄z+1 =
u∗mx̄z(P+)− u∗mx̄z(P−)

2(1 + τ)
−

NM−1−z

2
∑

k=1

1

(2k + 1)!
umx̄2k+1+z(1 + τ)2k, (19)

for z = 0, 2, 4, . . . , NM − 1 and m = 1, 2, . . . ,M . Since we can not calculate u∗mx̄z(P±)
we approximate it by u′mx̄z(P±). Where u′mx̄z(P±) is the Taylor series expansion from
(xj±1/2,tn−1/2) to x(P±) respectively.

umx̄z+1 =
u′mx̄z(P+)− u′mx̄z(P−)

2(1 + τ)
−

NM−1−z

2
∑

k=1

1

(2k + 1)!
umx̄2k+1+z(1 + τ)2k,

When discontinuities are present in the flow field a re-weighting and or limiting of the
derivatives is required. To calculate the odd derivatives we first apply re-weighting then
check for smoothness. If the results are not found to be smooth we then apply a limiter
such as the minmod operator to limit the derivatives.
To begin we outline the re-weighting algorithm. It should be noted that all previously

re-weighting schemes used in second order CESE schemes should be applicable to the
higher order CESE schemes. In this paper the derivation of the W2 scheme (Chang and
Wang (2003)) will be presented. First the function W is given as

W±(x−, x+, α) =
|x∓|

α

|x−|α + |x+|α
. (20)

To remain stable in the presence of discontinuities α ≥ 1. The odd-order derivatives are
now defined by:

(umx̄z)nj
def
= (ωm−)z (ûmx̄−z) + (ωm+)z (ûmx̄+z) , (21)

where

(ωm±)z = W±(u
c
mx̄−z , ucmx̄+z , αz), (22)
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with

ûmx̄∓z
def
= ±

(umx̄z−1)nj − u′mxz−1(P∓)

1 + τ
,

ucmx̄z∓

def
= ±

1

2
((umxz−1)nj − (u′mxz−1)nj∓1/2),

where (u′mxz−1)nj±1/2 is the Taylor series expansion from (xj±−1/2, n−1/2) to (xj±−1/2, n).

For solvers that are greater than 4thorder it was found that the re-weighting scheme
was not enough for stability. In this case we need to apply a limiter such as minmod
when the solution is no longer smooth. We define are smoothness check as

∣

∣

∣

∣

∂k+1um
∂x̄k+1

∣

∣

∣

∣

>

∣

∣

∣

∣

4β

k + 1

∂kum
∂x̄k

∣

∣

∣

∣

for k > 1 (23)

where β is an adjustable parameter on the order of 0.1 or 0.01. If Eq. (23) is found to
be true then the minmod limiter was applied. This smoothness check was applied to
all derivatives, even and odd, greater than 1. This test checks to make sure that each
successive term in the Taylor series is a correction on the previous term.
The minmod operator is defined as

minmod(a, b) = max(min(1, a/b), 0). (24)

So ux̄k is equal to

ux̄k = ûmx̄+kminmod(ûmx̄−k , ûmx̄+k) (25)

The above equations provide an explicit formulation for the odd spatial derivatives
when discontinuities are present in the flow field.

2.3. Numerical Outline

To summarise the numerical procedure used is as follows:

(1) First calculate all of the Taylor series coefficients for the flux and conserved
variables at (n− 1/2, j ± 1/2), points C and E in Fig. 1. The flux and temporal
derivative coefficients are calculated by Eqs. 7 and 8 respectively. It may also be
necessary to calculate the source term coefficients.

(2) Calculate all even derivatives using Eq. (16), starting with the highest unknown
even derivative.

(3) Calculate the highest odd derivative via Eq. (21)
(4) Check for smoothness using Eq. (23) and apply minmod, Eq. (25), as needed
(5) Repeat steps 3 and 4 until all odd derivatives are found
(6) Check the even derivative for smoothness, Eq. (23), and apply the minmod,

Eq. (25) limiter as needed. This is done for all even derivatives except the zero
derivative, i.e. k=0 in Eq. (25).
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3. Numerical Results

The following test cases show how the CESE method improves as the order of accuracy of
the method employed increases. The test cases used for convergence tests are: (i) a simple
convection equation with a source term, (ii) acoustic waves modelled by the linearised
Euler equations, and (iii) acoustic waves modelled by the non-linear Euler equations. For
all three cases, we calculate the order of accuracy by using the following formula:

ℓ2
def
=

√

∫

|φ|2dx ≈

√

∑

i

|φi|2∆xi

where φi is defined as the difference between the analytical and numerical solution and
∆xi is the grid spacing at a given location i. In all cases ∆x is constant. The rate of
convergence is taken as the slope of the best fit line through the points (log10(∆x),
log10(ℓ

2) ).

3.1. Convection Equation with Source Term

The first test case is the convection equation with a source term. In this problem we
solve

du

dt
+ a

du

dx
= aS0 cos(x)

−2π < x < 2π; t > 0

where a and S0 are constant. Under the periodic boundary condition the analytical
solution to this problem is

u(x, t) = cos(x− at) + S0sin(x).

For this test case we need to integrate the source term. Since the source therm is only
dependent on x we can generate an analytical results equal to

∫∫

S = aS0
∆t

2
sin(x)|

xj+1/2

xj−1/2 ,

∫∫

Sx̄x̄ = −aS0

(

∆x

4

)2 ∆t

2
sin(x)|

xj+1/2

xj−1/2 , . . . ,

∫∫

Sx̄2n = (−1)n/2aS0

(

∆x

4

)2n ∆t

2
sin(x)|

xj+1/2

xj−1/2 , for n = 0, 1, . . . ,
NM − 1

2
.

For the convergence tests, a = S0 = 1 and the test time was set to 2.5 l
a , where l is the

length of the domain. In all calculations, CFL = 0.7. Shown in Fig. (3) and Table (1), the
actual convergence rate agrees well with the order of accuracy of the scheme employed.
The computational scaling shows that by doubling the order of the Taylor series the time
required to complete a simulation will increase by about 22.2.
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Table 1.: Convergence rates of the numerical solutions of the convection equation, and
the averaged, normalized time for case with different order of accuracy.

Desired Order Actual Order Normalized Time
2 2.00 1.00
4 4.01 5.22
8 7.95 23.65
12 12.12 59.04
16 16.05 115.83
20 20.09 190.95
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Figure 3.: The ℓ2 norm of numerical solutions of the Convection equation with source
term. The symbols represent the actual calculated data and the lines represent the best-fit
curves of the data.

Another important aspect to consider is whether the higher-order resolution is worth
the additional computational cost. For this, we refer to Fig. (4). Shown in the figures, it
is more efficient to use a higher-order method rather than increasing the resolution for a
linear solver.
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Figure 4.: The ℓ2 norm versus the computational time for the solution of the convection
equation.

3.2. Linear Acoustic Equation

The second test case is the acoustic wave solved by solving the linearised Euler equations.
The conserved and flux values are

U = (u1, u2)
T = (ρ, v)T ,

F =

(

ρ∞v,
a2∞
ρ∞

ρ

)T

=

(

ρ∞u2,
a2∞
ρ∞

u1

)T

where ρ, U , and a are respectively the density, velocity, speed of sound. The speed of
sound is equal to

√

γp/ρ with γ=1.4. The values with a subscript ∞ are mean values of
the flow variables. The first-order derivatives for the flux functions are:

f11
= 0,f12

= ρ∞

f21
=

a2∞
ρ∞

,f22
= 0.

Since all of the first-order derivatives are constant the higher derivatives are zero. This
reduces the calculation of all fluxes to a matrix vector multiplication.
Under periodic boundary conditions the analytical solution for the linearised acoustic

wave equation is

ρ = ρ∞ +
ερ∞
a∞

cos

(

2nπ

l
(x− a∞t)

)

U = U∞ + εcos

(

2nπ

l
(x− a∞t)

)

for
−l

2
< x <

l

2
; t > 0

where n, l, and ε are respectively the number of waves in the domain, length of the
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domain, and an amplification factor. For this test case p∞=1, ρ∞=γ, ε=10−2, n=1, and
l=2. The run time was equal to 4.25 l

a∞

which allows the wave to propagate through the
domain 4.25 times. The CFL number is constant throughout the domain and is equal
to 0.75. As seen in Fig. (5) our desired order of convergence closely matches the actual
order of convergence. Table (2) shows the desired order of convergence, the actual order
of convergence, and the normalized time. Figure 6 shows that it is typically more efficient
to use a higher order scheme then to use more points. When the ℓ2 norm is still relatively
high, OD(10−8) it was found that 8ththrough 20thorder schemes had approximately the
same computational efficiency. The relative numerical cost was calculated by taking the
average simulation time per cell per iteration for multiple resolutions and dividing it by
the cost of the 2nd order version. The computational scaling shows that by doubling the
order of the Taylor series the time required to complete a simulation will increase by
about 22.2.
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Figure 5.: The ℓ2 norm of numerical solutions where points are actual calculated data
and the line is a best-fit cure of the data.



June 13, 2011 16:9 International Journal of Computational Fluid Dynamics CESE˙4th

International Journal of Computational Fluid Dynamics 13

Table 2.: Convergence rates for the linear acoustic solver and the average normalized
time for case.

Desired Order Actual Order Normalized Time
2 2.03 1.00
4 4.06 3.43
8 8.12 14.47
12 12.21 34.33
16 16.48 67.98
20 20.52 116.89
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Figure 6.: The ℓ2 norm versus the computational time for the solutions of the linear
acoustic wave equations.

The above cases showed that we were able to achieve higher-order convergence for
coupled, linear, wave equations.

3.3. Euler Equation

In this section we demonstrate higher order convergence test as well as our schemes
ability to capture discontinuities.
To construct an arbitrary order CESE solver for the one-dimensional Euler equations,

we plug the following unknown vector and flux function vector into Eq. (1):

U = (u1, u2, u3)
T =

(

ρ, ρv, p/(γ − 1) + ρv2/2
)T

,

F =
(

ρv, ρv2 + p, (ρE + p)v
)T

=
(

u2, (γ − 1)u3 + 1/2(3 − γ)u22/u1, γu2u3/u1 − 1/2(γ − 1)u32/u
2
1

)T
,

where ρ is the density, v is the velocity, E is the internal energy and γ is the ratio of
specific heat. For the higher order derivatives the order of differentiation does not mater,
i.e. fml,k

= fmk,l
and fml,k,p

= fml,p,k
= fmk,l,p

= fmk,p,l
= fmp,l,k

= fmp,k,l
so only the first

such permutation is expressed. One method to find the flux derivatives is to substitute
the higher order derivatives into Eq. 7.
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The first-order derivatives of the flux function f1 are:

f11
= 0, f12

= 1, f13
= 0,

and the second- and third-order derivatives are:

f1l,k
= 0, l, k = 1, 2, 3,

f1l,k,p
= 0, l, k, p = 1, 2, 3.

The first-order derivatives of the flux function f2 are:

f21
=

1

2
(γ − 3)

u22
u21

, f22
= (3− γ)

u2
u1

, f23
= γ − 1,

the second-order derivatives are:

f21,1
= −u2

2(γ−3)
u3
1

, f21,2
= (γ−3)u2

u2
1

, f21,3
= 0,

f22,2
= (3−γ)

u1
, f22,3

= 0, f23,3
= 0,

and the third-order derivatives are:

f21,1,1
= 3u2

2(γ−3)
u4
1

, f21,1,2
= −2 (γ−3)u2

u3
1

, f21,1,3
= 0,

f21,2,2
= (γ−3)

u2
1

, f21,2,3
= 0, f21,3,3

= 0,

f22,2,2
= 0, f22,2,3

= 0, f23,3,3
= 0.

The first-order derivatives of the flux function f3 are:

f31
= −γu2u3

u2
1

+ (γ−1)u3
2

u3
1

, f32
= γu3

u1
− 3

2(γ − 1)u
2
2

u2
1

, f33
= γu2

u1
,

the second-order derivatives are:

f31,1
= 2γu2u3

u3
1

− 3 (γ−1)u3
2

u4
1

, f31,2
= −γu3

u2
1

+ 3 (γ−1)u2
2

u3
1

, f31,3
= −γu2

u2
1

,

f32,2
= −3 (γ−1)u2

u2
1

, f32,3
= γ

u1
, f33,3

= 0,

the third-order derivatives are:

f31,1,1
= 12u3

2(γ−1)
u5
1

− 6γu2u3

u4
1

, f31,1,2
= 2γu3

u3
1

− 9 (γ−1)u2
2

u4
1

, f31,1,3
= 2γu2

u3
1

,

f31,2,2
= 6(γ − 1)u2

u3
1

, f31,2,3
= − γ

u2
1

, f31,3,3
= 0

f32,2,2
= −3γ−1

u2
1

, f32,2,3
= 0, f33,3,3

= 0.

Another method to find the flux derivatives is to use the product rule. As a preliminary
we will show both the product and quotient rule for any derivative. First let f(x, t) =
g(x, t)h(x, t) then any derivative of f can be expressed as

∂n+mf

∂xn∂tm
=

n
∑

k=0

m
∑

l=0

(

n

k

)(

m

l

)

∂n+m−k−lg

∂xn−k∂tm−l

∂k+lh

∂xk∂tl
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or solving for ∂n+mg
∂xn∂tm we can calculate any derivative of g

∂n+mg

∂xn∂tm
=

1

h

[

∂n+mf

∂xn∂tm
−

n
∑

k=0

m
∑

l=0

(

n

k

)(

m

l

)

∂n+m−k−lg

∂xn−k∂tm−l

∂k+lh

∂xk∂tl
for (k, l) 6= (0, 0)

]

Now we can express any derivative of the fluxes

∂n+mf1
∂xn∂tm

=
∂n+mu2
∂xn∂tm

∂n+mf2
∂xn∂tm

= (γ − 1)
∂n+mu3
∂xn∂tm

+
3− γ

2

n
∑

k=0

m
∑

l=0

(

n

k

)(

m

l

)

∂n+m−k−lu2
∂xn−k∂tm−l

∂k+lv

∂xk∂tl

∂n+mf3
∂xn∂tm

=

n
∑

k=0

m
∑

l=0

(

n

k

)(

m

l

)(

γ
∂n+m−k−lu3
∂xn−k∂tm−l

−
γ − 1

2

∂n+m−k−lu2v

∂xn−k∂tm−l

)

∂k+lv

∂xk∂tl

(26)

We still need to express the derivatives of velocity as functions of flow variables.

∂n+mv

∂xn∂tm
=

∂n+m

∂xn∂tm

(

u2
u1

)

=

1

u1

[

∂n+mu2
∂xn∂tm

−

n
∑

k=0

m
∑

l=0

(

n

k

)(

m

l

)

∂n+m−k−lv

∂xn−k∂tm−l

∂k+lu1
∂xk∂tl

for (k, l) 6= (0, 0)

] (27)

Since the left hand side is always the highest unknown derivative everything on the
RHS is known. Equations (26) and (27) represent one possible formulation and is not
guaranteed to be the most efficient. We used Eqs. (26) and (27) in our simulations.
To show higher order convergence for a non-linear equation we solve the acoustic

equations. There are some problems when using the analytical solution because the Euler
solver will capture the non-linearities present in the flow field while the “analytical”
solution does not. This will lead to increasing errors in the analytical solution as ∆x
decreases. To mitigate the error, the perturbation was reduced to 10−6. For this test
case p∞=1/γ, ρ∞=1, n=2, and l=4 and the simulation time is 2.5 l

a∞

. The CFL number
is almost constant throughout the domain and is equivalent to 0.8. The convergence
rates are shown in table 3. From this table it can be seen that the computational cost
associated with increasing the accuracy is approximately squared, e.g. if the order of
accuracy is doubled then the CPU time will increase 4 times. As seen in fig. 8 using a
higher order is typically more efficient than using more points.

Table 3.: Convergence rates of the numerical solutions of the convection equation, and
the averaged, normalized time for case with different order of accuracy.

Desired Order Actual Order Normalized Time
2 2.00 1.00
4 3.97 2.84
8 7.48 12.40
12 11.96 32.30
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Figure 7.: The ℓ2 norm of the numerical solutions of the Euler solver for solving the
acoustic waves.
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Euler solver.

Next, we demonstrate the new high-order CESE method by examining numerical res-
olution for shocks and contact discontinuities. We will run two different test cases at
various resolutions and compare the results with a converged solution obtained by us-
ing very fine mesh. The CESE and the fifth-order space third-order time monotonicity
preserving (MP53) method (Suresh and Huynh (1997)). The CESE scheme is run at
4 different orders, 2, 4, 6, and 8th. The test cases chosen are Woodward’s blast wave
problem and Shu and Osher’s problem. Woodward’s blast wave problem(Woodward and
Colella (1984)) consists of two shock waves of different strengths heading towards each
other with wall boundary conditions. The initial conditions are
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(u, ρ, p) =







(0, 1, 103) 0 < x < 0.1
(0, 1, 10−2) 0.1 < x < 0.9
(0, 1, 102) 0.9 < x < 1.0

0.0 < t < 0.038.

The second test case is Shu and Osher’s problem (Shu and Osher (1989)), in which a
Mach 3 shock moves to the right and collides with an entropy disturbance moving to the
left. The boundary conditions are non-reflective and the initial conditions are

(u, ρ, p) =

{

(2.629369, 3.857143, 10.3333) −1 < x < −0.8
(0, 1 + 0.2 sin(5πx), 1) −0.8 < x < 1.0

0.0 < t < 0.47.

For both simulations α in Eq. (20) varies by this equation.

α = min

(

1

2

∣

∣

∣

∣

(

ucmx̄z+

ucmx̄z−

+
ucmx̄z−

ucmx̄z+

)

− 1

∣

∣

∣

∣

, 1.0

)

.

Using this equation the value of α approaches zero as ucmx̄z+ approaches ucmx̄z−. β in
Eq. (23) was set to 0.01.
Shown in Figures (9) and (10) the CESE results improve as the order of the solver

increases. As the order of the solver increase it becomes more difficult to suppress the
overshoot around discontinuities. This is seen in the 8thorder Shu-Osher simulation. It
was found that in order to suppress that overshoot the rest of the solution became
more diffusive then the second order CESE solution. When evaluating the Shu-Osher
simulations the MP scheme out performs the second order CESE scheme and compares
favourably to the 4 and 6thorder solutions. The 8thorder CESE scheme does a better job
then the MP except at the discontinuity where there is some overshoot. For the blastwave
problem very few differences were seen between the different simulations. All solvers were
able to resolve the shocks with one or two points. One difference is that in the 400 point
case the MP scheme does a slightly better job when x is greater than 0.7 and less then
0.8. Also in the 800 point case the 4thorder CESE scheme has more dissipation then the
other schemes. This could be caused by switching to the minmod limiter too soon.

4. Concluding Remarks

In this paper, we extended Chang’s fourth-order CESE method for one convection equa-
tion for solving a system of coupled hyperbolic PDE’s with arbitrarily high-order con-
vergence. Numerical results show that the extended algorithm can achieve higher-order
convergence for both linear and non-linear hyperbolic PDEs. The shock-capturing ca-
pability of the new method was comparable to that of the original second-order CESE
scheme as well as that of the fifth-order space third-order time monotonicity preserving
scheme. Further development of the high-order CESE method can benefit from further
development in several areas, including the effect of different limiters on the higher-order
derivatives, and the effects of the boundary condition treatments and the source-term
treatments for high-order accuracy.
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Figure 9.: Plots of the density profiles of the Woodwards blast wave problem. The con-
verged simulation was done by using the second-order CESE with 20001 points. For
better presentation, only a subset of the domain is shown in these plots.
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Figure 10.: Plots of the calculated density profiles for Shu and Osher’s problem. Each
plot has a different spatial resolution. The converged simulation was done by using the
second-order CESE scheme with 3201 points.


